A Touch of Complexity Theory

CS 1025 Computer Science Fundamentals |

Stephen M. Watt
University of Western Ontario

« Understand how running time or space used
Is a function of the problem size.

 Learn that this can be analyzed.

« See how to use this analysis to choose better algorithms.

Why Do We Double the Size?

class DataSet {
private double[] data = new double[20];

private iInt nused O;

public void addvValue(double val) {
IT (nused == data.length) {
double[] newData = new double[2*data.length];

for (int 1 = 0; i < data.length; i++)
newData[i] = data[i];
data = newData;

}

data[nused++] = val;

}

// All the rest 1s the same

Suppose We Grow One at a Time

* Time to add the first s 1.
* Time to add the second is 2 (copy 1, add 1).

* Time to add the k-th is k (copy k-1, add 1).

 Time to add all of the first k is

T(k)=1+2+ ... +k= (k"2 + k)/2

Time to Add the First k, with Doubling

 Time to add the first is 1.
 Time to add the second is 1.

e Time to add the 20t is 1.

« Must double size, however, for 21. This involves copying 20.
Time to add the 21st is 21 =20 + 1.

e Time to add the 22n9 s 1.

e Time to add the 40t is 1
 Time to add the 41stis 41.
e Time to add the 42n is 1

Time to Add the First k Elements (contd)

 Time to add the first k is

T(kk)y=1+1+1+...+1 (kofthem) +
+20+40+ 80+ 160 + ...+ 20*2"n, for max n such that 20*2*n < k

=Kk+20x[1+2+4+ .. +2%] = k+ 20 x [2Mn+1) — 1]

Note n is the integer such that 202" < k = 20*2Mn+1)
SO log[2](k/20) -1 < n < log[2](k/20).

Therefore, using the green inequality in the red expression,

k + 20x[2” (log[2](k/20) — 1+1) = 1] < T(K) < k + 20%[2* (log[2](k/20) +1) = 1]
k + 20 x [k/20 — 1] < T(k) < k + 20x[k/20 x 2 — 1]
2k — 20 < T(k) < 3k — 20
» That is rather a lot of algebra, but it shows the time to add the
first k elements is proportional to k.

Doesn’t This Waste Space?

« Potentially about half the space is wasted?

E.g. After enlarging from 20 to 21, have 19 unused slots.

 That is indeed the worst case behaviour.

 What is the behaviour on average?

Average Space Use

» Expect about 75 % used. Why?

* Suppose we have just doubled the size going from k to 2k
to add element k+1.

Then averaging over all cases k+1 to 2k we have
once k+1 out of 2k are full
once k+2 out of 2k are full

once 2k out of 2k are full.

=> an average of 1.5k/2k = % full for these cases.

Same for the previous bunch (from k/2 to k),
and the bunch before that (from k/4 to k/2),

=> On average % of slots are full and 4 are “wasted”.

Conclusion

* By doubling instead of adding one at a time,
we waste on average k/4 space.

* By doubling instead of adding one at a time,
we take time proportional to k instead of k*2.

« We can figure out how our programs behave
by mathematical analysis.

