
A Touch of Complexity Theory

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario

Objectives

• Understand how running time or space used
is a function of the problem size.

• Learn that this can be analyzed.

• See how to use this analysis to choose better algorithms.

Why Do We Double the Size?
class DataSet {

private double[] data = new double[20];

private int nused = 0;

public void addValue(double val) {

if (nused == data.length) {

double[] newData = new double[2*data.length];
for (int i = 0; i < data.length; i++)

newData[i] = data[i];

data = newData;

}
data[nused++] = val;

}

// All the rest is the same

}

Suppose We Grow One at a Time

• Time to add the first is 1.

• Time to add the second is 2 (copy 1, add 1).

• ...

• Time to add the k-th is k (copy k-1, add 1).

• Time to add all of the first k is

T(k) = 1 + 2 + ... + k = (k^2 + k)/2

Time to Add the First k, with Doubling

• Time to add the first is 1.

• Time to add the second is 1.

• ...

• Time to add the 20th is 1.

• Must double size, however, for 21. This involves copying 20.
Time to add the 21st is 21 = 20 + 1.

• Time to add the 22nd is 1.

• ...

• Time to add the 40th is 1

• Time to add the 41st is 41.

• Time to add the 42nd is 1

• ...

Time to Add the First k Elements (contd)

• Time to add the first k is

T(k) = 1 + 1 + 1 + ... + 1 (k of them) +
+ 20 + 40 + 80 + 160 + ...+ 20*2^n, for max n such that 20*2^n < k

= k + 20 × [1 + 2 + 4 + ... + 2^n] = k + 20 × [2^(n+1) – 1]

Note n is the integer such that 20*2^n < k ≤ 20*2^(n+1)
so log[2](k/20) -1 ≤ n < log[2](k/20).

Therefore, using the green inequality in the red expression,

k + 20×[2^ (log[2](k/20) – 1+1) – 1] ≤ T(k) < k + 20×[2^ (log[2](k/20) +1) – 1]
k + 20 × [k/20 – 1] ≤ T(k) < k + 20×[k/20 × 2 – 1]

2k – 20 ≤ T(k) < 3k – 20

• That is rather a lot of algebra, but it shows the time to add the
first k elements is proportional to k.

Doesn’t This Waste Space?

• Potentially about half the space is wasted?

E.g. After enlarging from 20 to 21, have 19 unused slots.

• That is indeed the worst case behaviour.

• What is the behaviour on average?

Average Space Use
• Expect about 75 % used. Why?

• Suppose we have just doubled the size going from k to 2k
to add element k+1.

Then averaging over all cases k+1 to 2k we have
once k+1 out of 2k are full
once k+2 out of 2k are full
...
once 2k out of 2k are full.

=> an average of 1.5k/2k = ¾ full for these cases.

Same for the previous bunch (from k/2 to k),
and the bunch before that (from k/4 to k/2),

=> On average ¾ of slots are full and ¼ are “wasted”.

Conclusion

• By doubling instead of adding one at a time,
we waste on average k/4 space.

• By doubling instead of adding one at a time,
we take time proportional to k instead of k^2.

• We can figure out how our programs behave
by mathematical analysis.

